login
Number of (n+1)X(5+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order
1

%I #4 Nov 06 2013 07:55:11

%S 12,211,5109,126851,3130708,77333664,1911322499,47238533054,

%T 1167469879103,28853204049176,713087755664766,17623492910180119,

%U 435552963190637813,10764403103144565858,266035096373745526067

%N Number of (n+1)X(5+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Column 5 of A231263

%H R. H. Hardin, <a href="/A231260/b231260.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 69*a(n-1) -2078*a(n-2) +38960*a(n-3) -525899*a(n-4) +5498915*a(n-5) -46432883*a(n-6) +324971505*a(n-7) -1918092860*a(n-8) +9666311433*a(n-9) -41987092645*a(n-10) +158405641708*a(n-11) -522483149728*a(n-12) +1515303637316*a(n-13) -3883210245412*a(n-14) +8829280197296*a(n-15) -17868610021296*a(n-16) +32259257306496*a(n-17) -52016416190400*a(n-18) +74922164013056*a(n-19) -96301233124608*a(n-20) +110211044965376*a(n-21) -111885000085504*a(n-22) +100202065260544*a(n-23) -78553659015168*a(n-24) +53334115090432*a(n-25) -30908302295040*a(n-26) +14987112742912*a(n-27) -5912828837888*a(n-28) +1821821108224*a(n-29) -410773356544*a(n-30) +60196651008*a(n-31) -4294967296*a(n-32)

%e Some solutions for n=3

%e ..0..0..0..0..1..1....0..0..1..1..0..0....0..0..0..0..0..0....0..0..0..1..1..1

%e ..0..0..0..1..1..2....0..1..1..0..0..0....0..1..1..0..0..1....0..0..1..1..1..2

%e ..1..1..1..1..2..2....1..0..0..1..1..2....1..1..0..0..1..1....2..2..1..1..2..2

%e ..1..1..1..1..1..1....0..0..1..1..2..2....2..2..2..2..2..2....2..1..1..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 06 2013