login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231237
Number of years after which it is either not possible to have a date falling on same day of the week, or the entire year can have the same calendar, in the Julian calendar.
1
0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
OFFSET
1,3
COMMENTS
In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 28.
This is the complement of A231002.
LINKS
Time And Date, Repeating Calendar
Time And Date, Julian Calendar
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-1).
FORMULA
From Chai Wah Wu, Jun 04 2024: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 2*a(n-12) + 2*a(n-13) - 2*a(n-14) + 2*a(n-15) - 2*a(n-16) + 2*a(n-17) - 2*a(n-18) + 2*a(n-19) - 2*a(n-20) + 2*a(n-21) - 2*a(n-22) + 2*a(n-23) - 2*a(n-24) + 2*a(n-25) - a(n-26) for n > 26.
G.f.: x^2*(x^4 + 1)*(x^2 - x + 1)*(x^18 + x^17 + x^16 - x^13 + x^10 + x^9 + x^8 - x^5 + x^2 + x + 1)/((x - 1)^2*(x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)*(x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). (End)
PROG
(PARI) for(i=0, 420, j=0; for(y=0, 420, if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7), j=1; break)); for(y=0, 420, if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7)&&((5*(y\4)+(y%4)-!(y%4))%7)==((5*((y+i)\4)+((y+i)%4)-!((y+i)%4))%7), j=2; break)); if(j!=1, print1(i", ")))
CROSSREFS
Cf. A231236 (Gregorian calendar).
Sequence in context: A131870 A004724 A099260 * A053241 A340288 A132329
KEYWORD
nonn,easy
AUTHOR
Aswini Vaidyanathan, Nov 06 2013
STATUS
approved