OFFSET
0,3
COMMENTS
Compare to a g.f. of the Fibonacci numbers (A000045):
Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x) = 1/(1-x-x^2).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..420
FORMULA
a(n) = Sum_{k=0..n} A231171(n,k)*(-1)^k for n>=0.
Limit n->infinity (a(n)/n!)^(1/n) = 1/log(2). - Vaclav Kotesovec, May 09 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 55*x^4 + 412*x^5 + 3665*x^6 +...
where
A(x) = 1 + x*(1-x)/(1-x) + x^2*(1-x)*(2-x)/((1-x)*(1-2*x)) + x^3*(1-x)*(2-x)*(3-x)/((1-x)*(1-2*x)*(1-3*x)) + x^4*(1-x)*(2-x)*(3-x)*(4-x)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, k-x +x*O(x^n))/prod(k=1, m, 1-k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2013
STATUS
approved