login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231172
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k - x) / (1 - k*x).
4
1, 1, 2, 9, 55, 412, 3665, 37809, 443998, 5848921, 85425959, 1370144160, 23941364521, 452710417321, 9210564625442, 200626664154849, 4658472162245695, 114865936425213532, 2997499707147860825, 82533717939413618649, 2391252655460083134718, 72723156542550310492081, 2316342951911550838935119
OFFSET
0,3
COMMENTS
Compare to a g.f. of the Fibonacci numbers (A000045):
Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x) = 1/(1-x-x^2).
LINKS
FORMULA
a(n) = Sum_{k=0..n} A231171(n,k)*(-1)^k for n>=0.
Limit n->infinity (a(n)/n!)^(1/n) = 1/log(2). - Vaclav Kotesovec, May 09 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 55*x^4 + 412*x^5 + 3665*x^6 +...
where
A(x) = 1 + x*(1-x)/(1-x) + x^2*(1-x)*(2-x)/((1-x)*(1-2*x)) + x^3*(1-x)*(2-x)*(3-x)/((1-x)*(1-2*x)*(1-3*x)) + x^4*(1-x)*(2-x)*(3-x)*(4-x)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, k-x +x*O(x^n))/prod(k=1, m, 1-k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A366177 A355281 A036074 * A009363 A069564 A109366
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2013
STATUS
approved