login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the power tower of Euler constant gamma.
4

%I #28 Oct 26 2014 17:54:15

%S 6,8,5,9,4,7,0,3,5,1,6,7,4,2,8,4,8,1,8,7,5,7,3,5,9,6,1,9,8,0,4,1,7,3,

%T 5,8,7,4,8,8,6,2,1,4,1,8,7,0,3,0,1,5,0,6,7,0,1,8,6,6,8,5,8,1,7,0,3,0,

%U 1,8,7,6,7,1,4,6,9,5,7,3,8,5,6,1,7,8,3,7,3,7,0,1,6,5,9,1,1,1,0,4,8,9,1,5,0

%N Decimal expansion of the power tower of Euler constant gamma.

%H Stanislav Sykora, <a href="/A231095/b231095.txt">Table of n, a(n) for n = 0..2000</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Euler_constant">Euler-Mascheroni constant</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Lambert_W_function">Lambert W function</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Tetration">Tetration</a>

%F In general, for 1/E^E <= c < 1, c^c^c^... = LambertW(log(1/c))/log(1/c). Hence, this number is LambertW(log(1/gamma))/log(1/gamma).

%e 0.685947035167428481875735 ...

%p evalf(-LambertW(-log(gamma))/log(gamma), 120); # _Vaclav Kotesovec_, Oct 26 2014

%t c = EulerGamma; RealDigits[ ProductLog[-Log[c]]/Log[c], 10, 111] (* _Robert G. Wilson v_, Oct 24 2014 *)

%o (PARI) -lambertw(-log(Euler))/log(Euler)

%Y Cf. A001620.

%K nonn,cons

%O 0,1

%A _Stanislav Sykora_, Nov 03 2013