login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..3 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4 and at least one element with value (x(i,j)-1) mod 4, no adjacent elements equal, and upper left element zero
13

%I #4 Nov 03 2013 07:16:35

%S 0,0,0,0,2,0,0,14,2,0,0,32,50,10,0,0,100,128,410,22,0,0,428,644,2080,

%T 2430,70,0,0,1616,5100,20050,18688,16198,186,0,0,5784,33696,310804,

%U 344136,209440,103042,538,0,0,21248,211032,4110640,10631552,7293728

%N T(n,k)=Number of nXk 0..3 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4 and at least one element with value (x(i,j)-1) mod 4, no adjacent elements equal, and upper left element zero

%C Table starts

%C .0....0........0..........0.............0................0..................0

%C .0....2.......14.........32...........100..............428...............1616

%C .0....2.......50........128...........644.............5100..............33696

%C .0...10......410.......2080.........20050...........310804............4110640

%C .0...22.....2430......18688........344136.........10631552..........274004640

%C .0...70....16198.....209440.......7293728........448752816........22665736960

%C .0..186...103042....2150784.....142466422......17477913984......1729680196768

%C .0..538...667690...22847008....2871061676.....702369644524....136193662172048

%C .0.1494..4294910..239510016...57167235796...27889180833188..10596817937397952

%C .0.4230.27706854.2523778080.1143545760606.1112507026382520.828295717027921136

%H R. H. Hardin, <a href="/A231049/b231049.txt">Table of n, a(n) for n = 1..179</a>

%F Empirical for column k:

%F k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3)

%F k=3: a(n) = 3*a(n-1) +19*a(n-2) +19*a(n-3) +12*a(n-4) -8*a(n-5) +8*a(n-6)

%F k=4: a(n) = 8*a(n-1) +33*a(n-2) -68*a(n-3)

%F k=5: [order 36]

%F k=6: [order 93]

%F Empirical for row n:

%F n=2: a(n) = 3*a(n-1) +8*a(n-3) +6*a(n-4) -4*a(n-5) for n>6

%F n=3: [order 10] for n>11

%F n=4: [order 31] for n>32

%e Some solutions for n=4 k=4

%e ..0..3..0..1....0..1..2..3....0..3..0..1....0..1..0..3....0..1..2..1

%e ..0..1..2..1....2..3..0..3....2..1..2..3....2..3..2..1....0..3..0..1

%e ..2..1..0..3....0..3..2..3....2..1..2..1....0..3..2..1....0..1..2..1

%e ..2..3..2..1....2..1..0..1....0..3..0..1....2..1..0..1....2..3..0..3

%Y Column 2 is A230893

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, Nov 03 2013