login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX5 0..3 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4 and at least one element with value (x(i,j)-1) mod 4, no adjacent elements equal, and upper left element zero
1

%I #4 Nov 03 2013 07:13:57

%S 0,100,644,20050,344136,7293728,142466422,2871061676,57167235796,

%T 1143545760606,22834586760592,456274562629780,9114796829043214,

%U 182100336288975336,3637960938217657028,72679448308125342402

%N Number of nX5 0..3 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4 and at least one element with value (x(i,j)-1) mod 4, no adjacent elements equal, and upper left element zero

%C Column 5 of A231049

%H R. H. Hardin, <a href="/A231046/b231046.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 12*a(n-1) +161*a(n-2) +479*a(n-3) -6440*a(n-4) -76243*a(n-5) -10558*a(n-6) +451344*a(n-7) +2020488*a(n-8) -2582232*a(n-9) +385720*a(n-10) -11411116*a(n-11) +16317478*a(n-12) -7836152*a(n-13) +22258694*a(n-14) -43868182*a(n-15) +22620856*a(n-16) -14534462*a(n-17) +58185316*a(n-18) -20490672*a(n-19) -20508996*a(n-20) -30191252*a(n-21) +1794712*a(n-22) +8269896*a(n-23) +5870551*a(n-24) +2241164*a(n-25) -96667*a(n-26) -21533*a(n-27) -650816*a(n-28) -264235*a(n-29) -125314*a(n-30) +61088*a(n-31) +29008*a(n-32) +12576*a(n-33) -1024*a(n-34) -192*a(n-35) -128*a(n-36)

%e Some solutions for n=4

%e ..0..1..2..3..0....0..1..2..1..2....0..3..0..3..2....0..1..2..1..0

%e ..0..3..2..1..2....2..3..2..3..0....2..1..0..1..0....0..3..0..3..0

%e ..0..3..0..3..0....2..1..2..1..2....0..3..0..1..2....2..1..0..3..2

%e ..0..1..2..1..2....2..3..0..3..2....2..1..0..3..2....2..3..0..1..0

%K nonn

%O 1,2

%A _R. H. Hardin_, Nov 03 2013