login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230984
Number of white square subarrays of (n+1) X (3+1) binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with upper left element zero.
2
2, 4, 11, 24, 59, 139, 332, 796, 1903, 4563, 10934, 26209, 62835, 150636, 361156, 865882, 2076002, 4977375, 11933643, 28611925, 68599559, 164473454, 394339672, 945464381, 2266835107, 5434939417, 13030752556, 31242393432, 74906430076
OFFSET
1,1
COMMENTS
Column 3 of A230989.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 3*a(n-3) - 6*a(n-4) + 2*a(n-5) + 4*a(n-6) - a(n-7) - a(n-8).
Empirical g.f.: x*(2 - 3*x^2 - 4*x^3 + 2*x^4 + 2*x^5 - x^6) / (1 - 2*x - 3*x^2 + 3*x^3 + 6*x^4 - 2*x^5 - 4*x^6 + x^7 + x^8). - Colin Barker, Mar 18 2018
EXAMPLE
Some solutions for n=6:
..0..x..0..x....0..x..1..x....0..x..0..x....0..x..1..x....0..x..0..x
..x..1..x..1....x..1..x..0....x..1..x..0....x..1..x..0....x..1..x..1
..1..x..0..x....0..x..1..x....1..x..1..x....1..x..0..x....0..x..0..x
..x..0..x..0....x..1..x..0....x..0..x..0....x..0..x..1....x..1..x..1
..1..x..1..x....0..x..0..x....1..x..1..x....1..x..0..x....1..x..0..x
..x..0..x..1....x..0..x..1....x..0..x..0....x..1..x..1....x..0..x..1
..1..x..0..x....1..x..1..x....1..x..1..x....0..x..0..x....1..x..1..x
CROSSREFS
Cf. A230989.
Sequence in context: A362042 A018006 A183510 * A196195 A205500 A342533
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 02 2013
STATUS
approved