login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Boustrophedon transform of composite numbers.
7

%I #17 Jun 12 2022 14:06:01

%S 4,10,24,59,162,526,2016,8978,45696,261760,1666308,11668652,89141580,

%T 737740174,6575238599,62788901290,639562492327,6921688171153,

%U 79316703841369,959397056891093,12215422719238138,163308172248420391,2287234651735371577

%N Boustrophedon transform of composite numbers.

%H Reinhard Zumkeller, <a href="/A230954/b230954.txt">Table of n, a(n) for n = 0..400</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>

%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%F a(n) = sum(A109449(n,k)*A002808(k+1): k=0..n).

%t cc = Select[Range[max = 40], CompositeQ]; t[n_, 0] := cc[[n+1]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, cc // Length, 0] (* _Jean-François Alcover_, Feb 12 2016 *)

%o (Haskell)

%o a230954 n = sum $ zipWith (*) (a109449_row n) a002808_list

%o (Python)

%o from itertools import accumulate, count, islice

%o from sympy import composite

%o def A230954_gen(): # generator of terms

%o blist = tuple()

%o for i in count(1):

%o yield (blist := tuple(accumulate(reversed(blist),initial=composite(i))))[-1]

%o A230954_list = list(islice(A230954_gen(),40)) # _Chai Wah Wu_, Jun 12 2022

%Y Cf. A230955, A000747, A000732, A230953.

%K nonn

%O 0,1

%A _Reinhard Zumkeller_, Nov 03 2013