The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230863 a(1)=0; thereafter a(n) = 2^(a(ceiling(n/2)) + a(floor(n/2))). 2
 0, 1, 2, 4, 8, 16, 64, 256, 4096, 65536, 16777216, 4294967296, 1208925819614629174706176, 340282366920938463463374607431768211456, 2135987035920910082395021706169552114602704522356652769947041607822219725780640550022962086936576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(16) = 2^512 = 134078079299425970995740249982058461274793658205923933777235\ 614437217640300735469768018742981669034276900318581864860508537538828119465\ 69946433649006084096. LINKS Table of n, a(n) for n=1..15. Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory, 2022 (to appear). FORMULA In general, for n >= 11, define i by 9*2^(i-1) < n <= 9*2^i. Then it appears that a(n) = 2^2^2^...^2^x, a tower of height i+5, containing i+4 2's, where x is in the range 0 < x <= 1. For example, if n=18, i=1, and a(18) = 2^8192 = 2^2^2^2^2^0.91662699..., of height 6. Note also that i+5 = A230864(a(n)). MAPLE f:=proc(n) option remember; if n=1 then 0 else 2^(f(ceil(n/2))+f(floor(n/2))); fi; end; [seq(f(n), n=1..16)]; CROSSREFS Cf. A230864, A230874, A230875. Sequence in context: A076086 A246907 A074700 * A322037 A013133 A012997 Adjacent sequences: A230860 A230861 A230862 * A230864 A230865 A230866 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 02 2013; revised Mar 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 00:22 EDT 2024. Contains 373492 sequences. (Running on oeis4.)