login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230863 a(1)=0; thereafter a(n) = 2^(a(ceiling(n/2)) + a(floor(n/2))). 2
0, 1, 2, 4, 8, 16, 64, 256, 4096, 65536, 16777216, 4294967296, 1208925819614629174706176, 340282366920938463463374607431768211456, 2135987035920910082395021706169552114602704522356652769947041607822219725780640550022962086936576 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(16) = 2^512

  = 134078079299425970995740249982058461274793658205923933777235\

    614437217640300735469768018742981669034276900318581864860508537538828119465\

    69946433649006084096.

REFERENCES

Max A. Alekseyev, Donovan Johnson and N. J. A. Sloane, On Kaprekar's Junction Numbers, in preparation, 2017.

LINKS

Table of n, a(n) for n=1..15.

FORMULA

In general, for n >= 11, define i by 9*2^(i-1) < n <= 9*2^i. Then it appears that

a(n) = 2^2^2^...^2^x,

a tower of height i+5, containing i+4 2's, where x is in the range 0 < x <= 1.

For example, if n=18, i=1, and

a(18) = 2^8192 = 2^2^2^2^2^0.91662699..., of height 6.

Note also that i+5 = A230864(a(n)).

MAPLE

f:=proc(n) option remember;

if n=1 then 0 else 2^(f(ceil(n/2))+f(floor(n/2))); fi; end;

[seq(f(n), n=1..16)];

CROSSREFS

Cf. A230864, A230874, A230875.

Sequence in context: A076086 A246907 A074700 * A322037 A013133 A012997

Adjacent sequences:  A230860 A230861 A230862 * A230864 A230865 A230866

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 02 2013; revised Mar 26 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 06:42 EST 2021. Contains 349401 sequences. (Running on oeis4.)