login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230739
T(n,k)=Number of (n+3)X(k+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero
6
2, 8, 8, 30, 66, 30, 102, 244, 244, 102, 348, 2016, 2106, 2016, 348, 1172, 6576, 16536, 16536, 6576, 1172, 3956, 54138, 130446, 320970, 130446, 54138, 3956, 13326, 173428, 1025430, 2382398, 2382398, 1025430, 173428, 13326, 44916, 1427040, 8053490
OFFSET
1,1
COMMENTS
Table starts
.....2.......8.......30........102..........348...........1172.............3956
.....8......66......244.......2016.........6576..........54138...........173428
....30.....244.....2106......16536.......130446........1025430..........8053490
...102....2016....16536.....320970......2382398.......46599682........342031378
...348....6576...130446....2382398.....43853402......801845362......14669811856
..1172...54138..1025430...46599682....801845362....36695929036.....625553036008
..3956..173428..8053490..342031378..14669811856...625553036008...26681634560690
.13326.1427040.63237238.6692078688.268320990890.28644012159382.1137681116923966
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) +3*a(n-2) -6*a(n-3) +a(n-5)
k=2: a(n) = 31*a(n-2) -126*a(n-4) +42*a(n-6) +79*a(n-8) -a(n-10) +8*a(n-12)
k=3: [order 22]
k=4: [order 50]
EXAMPLE
Some solutions for n=3 k=4
..x..0..x..0..x..2..x....x..0..x..2..x..2..x....x..0..x..0..x..1..x
..1..x..1..x..1..x..0....2..x..1..x..0..x..1....1..x..1..x..2..x..0
..x..2..x..0..x..1..x....x..0..x..1..x..1..x....x..2..x..0..x..2..x
..1..x..0..x..2..x..0....1..x..0..x..2..x..0....1..x..0..x..2..x..0
..x..2..x..1..x..1..x....x..2..x..0..x..2..x....x..2..x..1..x..1..x
..1..x..1..x..0..x..0....1..x..2..x..1..x..1....1..x..0..x..0..x..0
CROSSREFS
Column 1 is A230701
Column 3 is A230703
Column 5 is A230705
Column 7 is A230707
Sequence in context: A250313 A180825 A230708 * A227326 A323852 A064231
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 28 2013
STATUS
approved