|
|
A230663
|
|
Least prime p such that x^2 + 3*x + p produces primes for x = 0..n-1 but not x = n.
|
|
1
|
|
|
2, 67, 3, 349, 79, 439, 21559, 14713, 13, 8123233, 223, 3468214093
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(39) = 43 and all other terms > 128865958933.
|
|
LINKS
|
Table of n, a(n) for n=1..12.
R. A. Mollin, Prime-producing quadratics, Amer. Math. Monthly 104 (1997), 529-544.
|
|
MATHEMATICA
|
Table[p = 2; While[! (Union[Table[PrimeQ[x^2 + 3*x + p], {x, 0, n - 1}]] == {True} && PrimeQ[n^2 + 3*n + p] == False), p = NextPrime[p]]; p, {n, 9}] (* T. D. Noe, Oct 29 2013 *)
|
|
CROSSREFS
|
Cf. A164926.
Sequence in context: A335546 A139822 A119552 * A016535 A245097 A139864
Adjacent sequences: A230660 A230661 A230662 * A230664 A230665 A230666
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Zak Seidov, Oct 27 2013
|
|
STATUS
|
approved
|
|
|
|