The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230662 Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), U=(1,2), d=(1,-1), D=(1,-2) and H=(1,0). 1

%I #26 Jun 28 2022 03:16:47

%S 1,1,2,4,10,26,74,218,668,2096,6726,21946,72666,243504,824528,2816854,

%T 9698520,33620626,117254340,411135452,1448544666,5125796448,

%U 18209367238,64919822556,232206203152,833040115596,2996741699470,10807658186756,39068847237770

%N Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), U=(1,2), d=(1,-1), D=(1,-2) and H=(1,0).

%H Alois P. Heinz, <a href="/A230662/b230662.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 47/54 + (1/54)*sqrt(2479 - (6525*15^(2/3))/(-8271 + 1496*sqrt(51))^(1/3) + 45*(15*(-8271 + 1496*sqrt(51)))^(1/3)) + (1/2)*sqrt(4958/729 + (725*5^(2/3))/(27*(3*(-8271 + 1496*sqrt(51)))^(1/3)) - (5*(5*(-8271 + 1496*sqrt(51)))^(1/3))/(27*3^(2/3)) + 318616/(729*sqrt(2479 - (6525*15^(2/3))/(-8271 + 1496*sqrt(51))^(1/3) + 45*(15*(-8271 + 1496*sqrt(51)))^(1/3)))) = 3.8344372490288055637652411266... and c = 0.2279529551507616709766813416011544206054574311958828512... - _Vaclav Kotesovec_, Oct 30 2013, updated Sep 11 2021

%e a(0) = 1: the empty path.

%e a(1) = 1: u.

%e a(2) = 2: HU, uu.

%e a(3) = 4: HuU, uHU, HUu, uuu.

%e a(4) = 10: HHUU, udUU, HuuU, uHuU, HUHU, uuHU, HuUu, uHUu, HUuu, uuuu.

%e a(5) = 26: HHuUU, uduUU, HuHUU, uHHUU, HUdUU, uudUU, HHUuU, udUuU, HuuuU, uHuuU, HUHuU, uuHuU, HuUHU, uHUHU, HUuHU, uuuHU, HHUUu, udUUu, HuuUu, uHuUu, HUHUu, uuHUu, HuUuu, uHUuu, HUuuu, uuuuu.

%p b:= proc(x, y) option remember; `if`(y>x or y<0, 0,

%p `if`(x=0, 1, add(b(x-1, y+j), j=-2..2)))

%p end:

%p a:= n-> b(n, n):

%p seq(a(n), n=0..30);

%t b[x_, y_] := b[x, y] = If[y > x || y < 0, 0,

%t If[x == 0, 1, Sum[b[x - 1, y + j], {j, -2, 2}]]];

%t a[n_] := b[n, n];

%t Table[a[n], {n, 0, 30}] (* _Jean-Fran├žois Alcover_, Jun 28 2022, after _Alois P. Heinz_ *)

%Y Cf. A225042.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Oct 28 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)