login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value 2-x(i,j)
5

%I #4 Oct 27 2013 07:59:01

%S 1,0,0,0,3,0,0,3,3,0,0,9,15,9,0,0,15,21,21,15,0,0,33,135,123,135,33,0,

%T 0,63,177,531,531,177,63,0,0,129,1155,2547,8613,2547,1155,129,0,0,255,

%U 1509,11745,28161,28161,11745,1509,255,0,0,513,9855,54957,477279,337977

%N T(n,k)=Number of nXk 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value 2-x(i,j)

%C Table starts

%C .1...0....0.....0.......0........0..........0...........0.............0

%C .0...3....3.....9......15.......33.........63.........129...........255

%C .0...3...15....21.....135......177.......1155........1509..........9855

%C .0...9...21...123.....531.....2547......11745.......54957........255753

%C .0..15..135...531....8613....28161.....477279.....1539207......26178201

%C .0..33..177..2547...28161...337977....3951657....46564959.....547445439

%C .0..63.1155.11745..477279..3951657..169006665..1374288243...59075291211

%C .0.129.1509.54957.1539207.46564959.1374288243.40860127671.1212230763441

%H R. H. Hardin, <a href="/A230661/b230661.txt">Table of n, a(n) for n = 1..312</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) for n>1

%F k=2: a(n) = a(n-1) +2*a(n-2)

%F k=3: a(n) = 9*a(n-2) -4*a(n-4)

%F k=4: a(n) = 3*a(n-1) +8*a(n-2) -a(n-3) -a(n-4) for n>5

%F k=5: a(n) = 59*a(n-2) -230*a(n-4) -2*a(n-6) +32*a(n-8) for n>10

%F k=6: [order 23] for n>24

%F k=7: [order 46] for n>47

%e Some solutions for n=5 k=4

%e ..x..0..x..1....x..1..x..0....x..2..x..2....x..2..x..1....x..2..x..2

%e ..2..x..1..x....1..x..2..x....2..x..0..x....0..x..1..x....0..x..0..x

%e ..x..2..x..1....x..0..x..0....x..0..x..0....x..0..x..2....x..1..x..0

%e ..0..x..0..x....2..x..0..x....0..x..2..x....2..x..0..x....1..x..2..x

%e ..x..2..x..2....x..0..x..2....x..2..x..0....x..0..x..2....x..1..x..0

%Y Column 2 is A062510(n-1)

%Y Column 4 is A230648

%Y Column 6 is A230650

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, Oct 27 2013