Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 18 2015 18:18:44
%S 4,5,8,13,12,21,32,33,40,57,48,69,84,85,96,125,108,141,160,161,176,
%T 217,192,237,260,261,280,333,300,357,384,385,408,473,432,501,532,533,
%U 560,637,588,669,704,705,736,825,768,861
%N Coins left after packing twin hearts patterns into n X n coins.
%C Twin hearts (6c4a type) is one of total 17 distinct patterns appearing in 3X2 coins where each pattern consists of 6 perimeter parts from each coin and forms a continuous area.
%C a(n) is total coins left after packing twin hearts patterns (6c4a type: 6-curves cover 4 coins) into n X n coins with rotation not allowed. The total twin hearts patterns is A230548 and voids left is A230550. See illustration in links.
%H Kival Ngaokrajang, <a href="/A230549/a230549.pdf">Illustration of initial terms (U)</a>
%F a(n) = n^2 - 4*A230548(n).
%F G.f.: x^2 * (-3*x^10 - 4*x^8 + 3*x^7 + 8*x^6 + 4*x^5 - x^4 + 4*x^3 + 4*x^2 + 5*x + 4)/(1+x^3)*(1-x^3)^2*(1-x^2). (conjectured). - _Ralf Stephan_, Oct 30 2013
%o (Small Basic)
%o col = 1
%o row = 0
%o For n = 2 To 100
%o add = 0
%o If Math.Remainder(n,2) * Math.Remainder(n,3) <> 0 Then
%o add = 1
%o EndIf
%o If n >= 4 And Math.Remainder(n,2) = 0 Then
%o col = col + 1
%o EndIf
%o If n >= 3 And Math.Remainder(n,3) = 0 Then
%o row = row + 1
%o EndIf
%o U = n * n - (col * row + add)*4
%o TextWindow.Write(U+", ")
%o EndFor
%Y Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620 (6-curves).
%K nonn
%O 2,1
%A _Kival Ngaokrajang_, Oct 23 2013