Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Oct 18 2013 04:48:19
%S 1,2,21,312,5880,133920,3575880,109549440,3788104320,145957593600,
%T 6201593798400,288084016281600,14525808782284800,790129980896256000,
%U 46120599397192320000,2875600728738017280000,190740227037467627520000,13411608375592258191360000
%N Number of ascending runs of length n in the permutations of [2n].
%H Alois P. Heinz, <a href="/A230382/b230382.txt">Table of n, a(n) for n = 0..300</a>
%F For n>0, a(n) = (n^2+n+1)*(2*n)!/((n+2)*n!). - _Vaclav Kotesovec_, Oct 18 2013
%p a:= proc(n) option remember; `if`(n<2, 1+n,
%p 2*(2*n-1)*(n+1)*(n^2+n+1)*a(n-1)/((n+2)*(n^2-n+1)))
%p end:
%p seq(a(n), n=0..25);
%Y A diagonal of A122843.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Oct 17 2013