Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Jan 11 2022 22:11:09
%S 5,11,13,17,19,29,31,37,41,47,53,59,61,71,73,79,89,97,101,107,109,113,
%T 131,137,139,149,151,157,173,179,181,191,193,197,199,211,229,233,239,
%U 241,251,257,263,269,271,277,281,293,307,311,313,317,331,337,347,349,353,359,373,379,389,397,401,409,419,421,431,433,439,449,457,461,479,491,499
%N Prime numbers p such that their Fibonacci entry points are less than p+1.
%C For these primes p there exists a Fibonacci like sequence that doesn't contain multiples of p.
%C For other primes p the Fibonacci entry points are p+1. These primes are sequence A000057: Primes dividing all Fibonacci sequences.
%H Robert Israel, <a href="/A230359/b230359.txt">Table of n, a(n) for n = 1..10000</a>
%H B. Avila and T. Khovanova, <a href="http://arxiv.org/abs/1403.4614">Free Fibonacci Sequences</a>, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Avila/avila4.html">J. Int. Seq. 17 (2014) # 14.8.5</a>.
%F {p in A000040: A001177(p) < 1+p}.
%p filter:= proc(n) local i,a,b,c;
%p if not isprime(n) then return false fi;
%p a:= 0; b:= 1;
%p for i from 1 to n-1 do
%p c:= b;
%p b:= a+b mod n; if b = 0 then return true fi;
%p a:= c;
%p od;
%p false
%p end proc:
%p select(filter, [seq(i,i=3..1000,2)]); # _Robert Israel_, Sep 01 2020
%t A001177[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k], n], Return[k]]]; A230359 = Reap[For[p = 2, p <= 499, p = NextPrime[p], If[A001177[p] < 1+p, Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Oct 21 2013 *)
%o (Sage)
%o def isA230359(p):
%o return any(p.divides(fibonacci(k)) for k in (1..p))
%o print([p for p in primes(1, 500) if isA230359(p)]) # _Peter Luschny_, Nov 01 2019
%Y A002144 is a subsequence.
%Y Cf. A000057, A001177, A001602.
%K nonn
%O 1,1
%A _Brandon Avila_ and _Tanya Khovanova_, Oct 16 2013