login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=1..n} d(8*i+5) - Sum_{i=1..n} d(4*i+3), where d(n) = A000005(n).
8

%I #13 Apr 12 2024 03:54:49

%S 0,2,0,0,4,2,2,2,2,4,6,4,2,6,4,6,8,4,4,10,8,6,10,6,8,10,10,8,8,10,12,

%T 16,10,10,14,10,12,12,10,14,18,16,12,18,18,16,18,12,12,18,16,16,20,20,

%U 22,24,18,18,22,20,20,22,16,16,26,26,26,26,22,24,24,24,24,24,26,26,32,24,26,30,28,28,28,26,26,36

%N a(n) = Sum_{i=1..n} d(8*i+5) - Sum_{i=1..n} d(4*i+3), where d(n) = A000005(n).

%H Amiram Eldar, <a href="/A230295/b230295.txt">Table of n, a(n) for n = 1..10000</a>

%H Jorge Luis Cimadevilla Villacorta, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.09.832">Certain inequalities associated with the divisor function</a>, Amer. Math. Monthly, 120 (2013), 832-837. (Shows that a(n) >= 0.)

%F a(n) = (log(2)/2) * n + O(n^(1/3)*log(n)). - _Amiram Eldar_, Apr 12 2024

%p See A230290.

%t Accumulate[Table[DivisorSigma[0, 8*n + 5] - DivisorSigma[0, 4*n + 3], {n, 1, 100}]] (* _Amiram Eldar_, Apr 12 2024 *)

%o (PARI) vector(100, n, sum(i=1, n, numdiv(8*i+5)) - sum(i=1, n, numdiv(4*i+3))) \\ _Michel Marcus_, Oct 09 2014

%Y Cf. A000005, A230290, A230291, A230292, A230293, A230294, A230296, A230476.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Oct 17 2013