login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators to Dirichlet inverse of Euler totient based version of series expansion for x/LambertW(x).
4

%I #15 Jan 08 2021 12:26:20

%S 1,1,2,3,8,15,144,35,5760,315,5600,693,43545600,1001,6706022400,6435,

%T 14014,109395,376610217984000,46189,128047474114560000,323323,2540395,

%U 2028117,26976017466662584320000,96577,3241475864250624,35102025,2126818694000,5386025

%N Denominators to Dirichlet inverse of Euler totient based version of series expansion for x/LambertW(x).

%H G. C. Greubel, <a href="/A230284/b230284.txt">Table of n, a(n) for n = 1..385</a>

%t Clear[nn, n, k, s, x]; nn = 22; Denominator[CoefficientList[1 + Integrate[1 + Expand[Sum[Exp[Limit[Zeta[s]*Sum[(If[n == 1, 0, Table[DivisorSum[m, # MoebiusMu[#] &], {m, nn}][[GCD[n, k]]]])/(k)^(s - 1), {k, 1, n}], s -> 1]]*(-x)^n, {n, 1, nn}]], x], x]]

%Y Cf. A191898, A177885, A230283 (numerators).

%Y Similar to but strictly different from A264235.

%K nonn,frac

%O 1,3

%A _Mats Granvik_, Oct 15 2013