login
T(n,k)=Number of nXk 0..3 arrays x(i,j) with each element horizontally or vertically next to at least one element with value (x(i,j)+1) mod 4, and upper left element zero
7

%I #4 Oct 13 2013 16:28:14

%S 0,0,0,0,2,0,0,6,6,0,0,26,34,26,0,0,118,514,514,118,0,0,522,5838,

%T 18218,5838,522,0,0,2310,64838,517794,517794,64838,2310,0,0,10234,

%U 722386,15075834,38111288,15075834,722386,10234,0,0,45334,8040426,442507578

%N T(n,k)=Number of nXk 0..3 arrays x(i,j) with each element horizontally or vertically next to at least one element with value (x(i,j)+1) mod 4, and upper left element zero

%C Table starts

%C .0.....0.......0...........0..............0.................0.................0

%C .0.....2.......6..........26............118...............522..............2310

%C .0.....6......34.........514...........5838.............64838............722386

%C .0....26.....514.......18218.........517794..........15075834.........442507578

%C .0...118....5838......517794.......38111288........2905031942......220881339818

%C .0...522...64838....15075834.....2905031942......575915716590...113395635811566

%C .0..2310..722386...442507578...220881339818...113395635811566.57955254721687188

%C .0.10234.8040426.12967930114.16727315344402.22307089878854146

%H R. H. Hardin, <a href="/A230250/b230250.txt">Table of n, a(n) for n = 1..97</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1)

%F k=2: a(n) = 4*a(n-1) +a(n-2) +4*a(n-3)

%F k=3: [order 13]

%F k=4: [order 63]

%e Some solutions for n=3 k=4

%e ..0..1..1..0....0..1..2..3....0..1..0..3....0..1..2..1....0..3..0..1

%e ..1..2..2..1....3..2..3..0....3..2..2..3....1..2..3..2....1..2..1..2

%e ..0..3..3..0....2..1..2..1....3..0..1..0....0..1..0..1....2..3..0..3

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, Oct 13 2013