login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Trapezoid of dot products of row 5 (signs alternating) with sequential 6-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 6-tuples (C(5,0), -C(5,1), ..., -C(5,5)) and (C(n-1,k-5), C(n-1,k-4), ..., C(n-1,k)), n >= 1, 0 <= k <= n+4.
3

%I #33 Sep 08 2022 08:46:06

%S -1,5,-10,10,-5,1,-1,4,-5,0,5,-4,1,-1,3,-1,-5,5,1,-3,1,-1,2,2,-6,0,6,

%T -2,-2,1,-1,1,4,-4,-6,6,4,-4,-1,1,-1,0,5,0,-10,0,10,0,-5,0,1,-1,-1,5,

%U 5,-10,-10,10,10,-5,-5,1,1,-1,-2,4,10,-5,-20,0,20,5

%N Trapezoid of dot products of row 5 (signs alternating) with sequential 6-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 6-tuples (C(5,0), -C(5,1), ..., -C(5,5)) and (C(n-1,k-5), C(n-1,k-4), ..., C(n-1,k)), n >= 1, 0 <= k <= n+4.

%C The array is trapezoidal rather than triangular because C(n,k) is not uniquely defined for all negative n and negative k.

%C Row sums are 0.

%C Coefficients of (x-1)^5 (x-1)^(n-1), n > 0.

%H G. C. Greubel, <a href="/A230208/b230208.txt">Rows n=1..50 of trapezoid, flattened</a>

%H Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, <a href="https://www.emis.de/journals/JIS/VOL21/Falcao/falcao2.html">Combinatorial Identities Associated with a Multidimensional Polynomial Sequence</a>, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.

%F T(n,k) = Sum_{i=0..n+m-1} (-1)^(i+m)*C(m,i)*C(n-1,k-i), n >= 1, with T(n,0) = (-1)^m and m=5.

%e Trapezoid begins:

%e -1, 5, -10, 10, -5, 1;

%e -1, 4, -5, 0, 5, -4, 1;

%e -1, 3, -1, -5, 5, 1, -3, 1;

%e -1, 2, 2, -6, 0, 6, -2, -2, 1;

%e -1, 1, 4, -4, -6, 6, 4, -4, -1, 1;

%e -1, 0, 5, 0, -10, 0, 10, 0, -5, 0, 1;

%e -1, -1, 5, 5, -10, -10, 10, 10, -5, -5, 1, 1;

%e etc.

%t Flatten[Table[CoefficientList[(x - 1)^5 (x + 1)^n, x], {n, 0, 7}]] (* _T. D. Noe_, Oct 25 2013 *)

%t m=5; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* _G. C. Greubel_, Nov 29 2018 *)

%o (PARI) m=5; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ _G. C. Greubel_, Nov 29 2018

%o (Magma) m:=5; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // _G. C. Greubel_, Nov 29 2018

%o (Sage) m=5; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # _G. C. Greubel_, Nov 29 2018

%Y Using row j of the alternating Pascal triangle as generator: A007318 (j=0), A008482 and A112467 (j=1 after the first term in each), A182533 (j=2 after the first two rows), A230206-A230207 (j=3 and j=4), A230209-A230212 (j=6 to j=9).

%K easy,sign,tabf

%O 1,2

%A _Dixon J. Jones_, Oct 12 2013