login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230022
a(n) = |{the number of primes in the interval (k*n, (k+1)*n]: k = 0, 1, ..., n-1}|.
1
1, 1, 2, 2, 3, 3, 3, 4, 3, 4, 5, 5, 4, 5, 4, 5, 5, 6, 7, 6, 5, 6, 6, 6, 5, 5, 7, 6, 6, 7, 7, 6, 6, 7, 7, 8, 9, 8, 9, 9, 8, 8, 8, 9, 8, 9, 9, 8, 10, 10, 9, 10, 9, 10, 10, 10, 10, 11, 10, 10, 9, 10, 9, 11, 10, 11, 11, 11, 11, 11, 11, 11, 10, 12, 11, 10, 11, 12, 13, 11
OFFSET
1,3
COMMENTS
Conjecture: (i) a(n) is at least sqrt(n-1) for each n > 0, and equality holds only when n is 2 or 26.
(ii) The sequence contains all positive integers.
We have verified part (i) of the conjecture for n up to 10000.
LINKS
EXAMPLE
a(1) = 1 since the interval (0,1*1] contains no prime, and the set {0} has cardinaly 1.
a(3) = 2 since the intervals (0, 1*3], (1*3, 2*3], (2*3, 3*3] contain exactly 2, 1, 1 primes respectively, and the set {2, 1, 1} has cardinality 2.
MATHEMATICA
d[k_, n_]:=PrimePi[(k+1)*n]-PrimePi[k*n]
a[n_]:=Length[Union[Table[d[k, n], {k, 0, n-1}]]]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 23 2014
STATUS
approved