login
Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(k)*x^k which is the numerator of the n-th convergent of the continued fraction [1, 1/x, 1/x^2, ... ,1/x^n].
13

%I #7 Aug 05 2014 09:17:22

%S 1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,

%T 1,2,0,1,0,1,1,1,1,0,1,0,1,1,1,1,1,2,1,2,0,2,1,1,1,1,1,0,1,1,1,0,1,0,

%U 1,1,1,1,1,2,1,2,1,3,1,2,1,2,2,1,2,1

%N Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(k)*x^k which is the numerator of the n-th convergent of the continued fraction [1, 1/x, 1/x^2, ... ,1/x^n].

%C In the Name section, k = n(n+1)/2. For the denominator polynomials, see A230001. Conjecture: every nonnegative integer occurs infinitely many times.

%F Write the numerator polynomials as u(0), u(1), u(2), ... and the denominator polynomials as v(0), v(1), v(2),... Let p(0) = 1, q(0) = 1; p(1) = (1 + x)/x; q(1) = 1/x; p(n ) = p(n-1)/x^n + p(n-2), q(n) = q(n-1)/x^n + q(n-2). Then u(n)/v(n) = p(n)/q(n) for n>=0.

%e The first 7 rows:

%e 1 . . . . . . . . . . . . polynomial u(0) = 1

%e 1 1 . . . . . . . . . . . polynomial u(1) = 1 + x

%e 1 1 0 1 . . . . . . . . . u(2) = 1 + x + x^3

%e 1 1 0 1 0 1 1

%e 1 1 0 1 0 1 1 1 1 0 1

%e 1 1 0 1 0 1 1 1 1 1 2 0 1 0 1 1

%e 1 1 0 1 0 1 1 1 1 1 2 1 2 0 2 1 1 1 1 1 0 1

%t t[n_] := t[n] = Table[1/x^k, {k, 0, n}];

%t b = Table[Factor[Convergents[t[n]]], {n, 0, 10}];

%t p[x_, n_] := p[x, n] = Last[Expand[Numerator[b]]][[n]];

%t u = Table[p[x, n], {n, 1, 10}]

%t v = CoefficientList[u, x]

%t Flatten[v]

%Y Cf. A230001.

%K nonn,tabf

%O 0,36

%A _Clark Kimberling_, Oct 11 2013