Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Nov 03 2024 17:37:10
%S 1,10,65,130,260,340,1105,1972,2210,4420,8840,9860,15650,20737,32045,
%T 41474,44200,51272,55250,64090,75140,82948,103685,128180,207370,
%U 207553,221000,256360,352529,414740,415106,512720,532100,705058,759025,813800,829480,830212
%N For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m. The sequence (a(n)) consists of successive numbers m which d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) is an integer.
%C The integer sums d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) are given by A229999. - _Clark Kimberling_, Jun 16 2018
%C Also numbers m such that the sum of the squares of the unitary divisors of m is divisible by m (the unitary version of A046762). - _Amiram Eldar_, Jun 16 2018
%H Amiram Eldar, <a href="/A229996/b229996.txt">Table of n, a(n) for n = 1..333</a> (terms below 10^10)
%e The first 10 sums: 1, 5/2, 10/3, 17/4, 26/5, 25/3, 50/7, 65/8, 82/9, 13, so that a(1) = 1 and a(10) = 13.
%t z = 1000; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; k[n_] := Length[r[n]];
%t t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
%t s = Table[Plus @@ t[n], {n, 1, z}]; a[n_] := If[IntegerQ[s[[n]]], 1, 0]; u = Table[a[n], {n, 1, z}]; Flatten[Position[u, 1]] (* A229996 *)
%t usigma2[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n]^2)]; seqQ[n_] := Divisible[usigma2[n], n]; Select[Range[10^6], seqQ] (* _Amiram Eldar_, Jun 16 2018 *)
%o (PARI) is(n) = {my(f = factor(n)); !(prod(i = 1, #f~, f[i,1]^(2*f[i,2]) + 1) % n);} \\ _Amiram Eldar_, Jun 16 2024
%Y Cf. A034676, A046762, A229994, A077610, A229999.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Oct 31 2013
%E Definition corrected by _Clark Kimberling_, Jun 16 2018