Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 23 2020 03:28:43
%S 1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32,34,35,37,38,40,
%T 41,43,46,47,49,50,52,53,56,58,59,61,62,64,65,67,68,70,71,73,74,76,79,
%U 80,82,83,85,86,89,91,92,94,95,97,98,100,101,103,104,106
%N Numbers not divisible by 3 or 11.
%C Numbers coprime to 33.
%C For n from 1 to 20, a(n) mod 33 - n - floor(8*n/19) - 2*floor(n/7) has a period of 20 consisting of all zeros except for a -1 at index 7.
%C The first index where this differs from A192817 is n = 68; A192817(68) = 110 whereas a(68) = 112. - _Tom Edgar_, Feb 05 2015
%C The asymptotic density of this sequence is 20/33. - _Amiram Eldar_, Oct 23 2020
%H Vincenzo Librandi, <a href="/A229968/b229968.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
%F a(n+20) = a(n) + 33.
%F a(n) = 33*floor((n-1)/20) + f(n) + floor(8*f(n)/19) + 2*floor(f(n)/7) - floor(f(n+12)/19) + 32*floor(f(n-1)/19), where f(n) = n mod 20.
%F a(n) = a(n-1)+a(n-20)-a(n-21). G.f.: x*(x^20 +x^19 +2*x^18 +x^17 +2*x^16 +x^15 +2*x^14 +3*x^13 +x^12 +2*x^11 +x^10 +2*x^9 +x^8 +3*x^7 +2*x^6 +x^5 +2*x^4 +x^3 +2*x^2 +x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)*(x^8 -x^6 +x^4 -x^2 +1)). - _Colin Barker_, Oct 08 2013
%p for n from 1 to 500 do if n mod 3<>0 and n mod 11 <>0 then print(n) fi od
%t Select[Range[132], GCD[#, 33] == 1 &] (* _Alonso del Arte_, Oct 05 2013 *)
%t Select[Range[200], Mod[#, 3]>0 && Mod[#, 11]>0 &] (* _Vincenzo Librandi_, Feb 08 2014 *)
%Y Cf. A007775, A192817.
%K nonn,easy
%O 1,2
%A _Gary Detlefs_, Oct 04 2013