login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = q^2*(q^2+2*q-1)/2, where q = n-th prime power A000961(n).
2

%I #8 Aug 22 2020 17:32:39

%S 1,14,63,184,425,1519,2528,3969,8591,16393,36736,46529,71839,151823,

%T 210625,285039,377609,491071,556544,987049,1480961,1787983,2542559,

%U 2998849,4092713,6262319,7148041,8648704,10374079,13061231,14585473,19964959,22051521,24297503,32072129,45172609,53055401,57362863,66759119

%N a(n) = q^2*(q^2+2*q-1)/2, where q = n-th prime power A000961(n).

%H L. Kaylor, D. Offner, <a href="https://projecteuclid.org/euclid.involve/1513733722">Counting matrices over a finite field with all eigenvalues in the field</a>, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. [<a href="http://dx.doi.org/10.2140/involve.2014.7.627">DOI</a>]

%Y Cf. A000961, A229738.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Oct 05 2013