Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:46:06
%S 0,1,70,1107,8092,38165,135954,398567,1012664,2306025,4816030,9377467,
%T 17232084,30162301,50651498,82073295,128912240,197018321,293897718,
%U 429042211,614299660,864287973,1196854978,1633586615,2200365864,2927984825,3852812366,5017519755,6471866692,8273550157,10489118490
%N 151*n^7/315+2*n^5/9+7*n^3/45+n/7.
%H Vincenzo Librandi, <a href="/A229735/b229735.txt">Table of n, a(n) for n = 0..1000</a>
%H M. B. Nathanson, <a href="http://arxiv.org/abs/1305.7172">Growth polynomials for additive quadruples and (h, k)-tuples</a>, arXiv preprint arXiv:1305.7172, 2013. See Psi_4(n).
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).
%F G.f.: x*(x^6+62*x^5+575*x^4+1140*x^3+575*x^2+62*x+1) / (x-1)^8. - _Colin Barker_, Oct 06 2013
%t Table[151 n^7/315 + 2 n^5/9 + 7 n^3/45 + n/7, {n, 0, 40}] (* _Vincenzo Librandi_, Oct 06 2013 *)
%o (Magma) [151*n^7/315+2*n^5/9+7*n^3/45+n/7: n in [0..30]]; // _Vincenzo Librandi_, Oct 06 2013
%Y Cf. A071816.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Oct 01 2013