login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229677
a(n) = Sum_{k = 0..n} Product_{j = 0..9} C(n+j*k,k).
3
1, 3628801, 2375880907276801, 4386797386179342934060801, 12868640117405297821759744777996801, 49120459033702373637913562847507823210617601, 222254155614179529476178258638452174287098861960755201, 1132660294172702489573582429384603543633942385302181948349459201
OFFSET
0,2
COMMENTS
Number of lattice paths from {n}^10 to {0}^10 using steps that decrement one component or all components by 1.
LINKS
FORMULA
a(n) = Sum_{k = 0..n} multinomial(n+9*k; n-k, {k}^10).
G.f.: Sum_{k >= 0} (10*k)!/k!^10 * x^k / (1-x)^(10*k+1).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 1814401*x^2 + 791960304240001*x^3 + 1096699347338442061435201*x^4 + ... appears to have integer coefficients. - Peter Bala, Jan 13 2016
MAPLE
with(combinat):
a:= n-> add(multinomial(n+9*k, n-k, k$10), k=0..n):
seq(a(n), n=0..10);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); a[n_] := Sum[multinomial[n + 9*k, Join[{n - k}, Array[k&, 10]]], {k, 0, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
Column k = 10 of A229142.
Sequence in context: A181726 A195394 A053501 * A350335 A253992 A253999
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 27 2013
STATUS
approved