Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 07 2018 18:29:42
%S 1,362881,12504639772801,1080492192338314694401,
%T 140810184334251776225321193601,
%U 23183593018924832394604719137184142081,4439414110286267003192333763481728593177802241,944848564471993704169724618186222285154304912036663681
%N a(n) = Sum_{k = 0..n} Product_{j = 0..8} C(n+j*k,k).
%C Number of lattice paths from {n}^9 to {0}^9 using steps that decrement one component or all components by 1.
%H Alois P. Heinz, <a href="/A229676/b229676.txt">Table of n, a(n) for n = 0..100</a>
%F a(n) = Sum_{k = 0..n} multinomial(n+8*k; n-k, {k}^9).
%F G.f.: Sum_{k >= 0} (9*k)!/k!^9 * x^k / (1-x)^(9*k+1).
%F exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 181441*x^2 + 4168213439041*x^3 + 270123052269252349441*x^4 + ... appears to have integer coefficients. - _Peter Bala_, Jan 13 2016
%p with(combinat):
%p a:= n-> add(multinomial(n+8*k, n-k, k$9), k=0..n):
%p seq(a(n), n=0..10);
%t multinomial[n_, k_List] := n!/Times @@ (k!); a[n_] := Sum[multinomial[n + 8*k, Join[{n - k}, Array[k&, 9]]], {k, 0, n}]; Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *)
%Y Column k = 9 of A229142.
%K nonn,easy
%O 0,2
%A _Alois P. Heinz_, Sep 27 2013