Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Apr 27 2021 22:20:40
%S 0,0,0,1,6,0,3,40,39,0,12,122,244,202,0,40,488,1109,1496,925,0,120,
%T 1608,6031,10227,8800,3924,0,336,5392,28448,77620,89331,50084,15795,0,
%U 896,17368,136778,535671,960325,747299,277996,61182,0,2304,55232,633328
%N T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.
%C Table starts
%C .0.....0.......1........3.........12..........40...........120............336
%C .0.....6......40......122........488........1608..........5392..........17368
%C .0....39.....244.....1109.......6031.......28448........136778.........633328
%C .0...202....1496....10227......77620......535671.......3723370.......25022190
%C .0...925....8800....89331.....960325.....9722206......98015235......960209886
%C .0..3924...50084...747299...11485716...170405645....2495874984....35693194243
%C .0.15795..277996..6049298..133784624..2902520386...61836040854..1290897457785
%C .0.61182.1513104.47723226.1525870912.48303362606.1498317588826.45634751291449
%H R. H. Hardin, <a href="/A229637/b229637.txt">Table of n, a(n) for n = 1..287</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3) for n > 5
%F k=3: a(n) = 15*a(n-1) - 81*a(n-2) + 185*a(n-3) - 162*a(n-4) + 60*a(n-5) - 8*a(n-6) for n > 7.
%F k=4: [order 6] for n > 9.
%F k=5: [order 18] for n > 20.
%F k=6: [order 27] for n > 30.
%F k=7: [order 57] for n > 60.
%F Empirical for row n:
%F n=1: a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n > 6.
%F n=2: a(n) = 6*a(n-1) - 6*a(n-2) - 16*a(n-3) + 12*a(n-4) + 24*a(n-5) + 8*a(n-6).
%F n=3: [order 9] for n > 12.
%F n=4: [order 18] for n > 21.
%F n=5: [order 30] for n > 33.
%F n=6: [order 69] for n > 72.
%e Some solutions for n=3, k=4:
%e 0 1 0 2 0 1 0 1 0 1 0 2 0 1 0 0 0 1 1 2
%e 2 1 0 2 2 1 0 1 2 2 0 1 0 2 1 2 0 1 0 2
%e 2 1 2 0 1 2 0 1 1 1 0 1 0 2 1 0 0 1 0 1
%Y Column 2 is A229600.
%Y Row 1 is A052482(n-2).
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Sep 27 2013