%I #6 Oct 01 2013 13:01:12
%S 1,3,7,10,1167,2344,3511,5855,15221,21076,36297,57373,151043,3078233,
%T 3229276,6307509,9536785,82601789,92138574,266878937,625896448,
%U 892775385,2411447218,41887378091,756384252856,9118498412363,9874882665219,28868263742801
%N Denominators of continued fraction transform of e.
%C The function f defined at A229350 is here called the continued fraction transform; specifically, to define f(x), start with x > 0: let p(i)/q(i), for i >=0, be the convergents to x; then f(x) is the number [p(0)/q(0), p(1)/q(1), p(2)/q(2), ... ].
%e The first 5 convergents to f(e) are 2/1, 7/3, 16/7, 23/10, 2684/1167.
%t $MaxExtraPrecision = Infinity;
%t z = 600; x[0] = E; c[0] = Convergents[x[0], z];
%t x[n_] := N[FromContinuedFraction[c[n - 1]], 80];
%t c[n_] := Convergents[x[n]];
%t Table[x[n], {n, 1, 20}] (* f(e), f(f(e)), ... *)
%t RealDigits[x[1]] (* f(e), A229594 *)
%t Numerator[c[1]] (* A229595 *)
%t Denominator[c[1]] (* A229596 *)
%Y Cf. A229594, A229596, A229597.
%K nonn,frac
%O 0,2
%A _Clark Kimberling_, Sep 26 2013