login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of defective 3-colorings of an n X 5 0..2 array connected diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.
1

%I #12 Apr 27 2021 21:01:36

%S 0,1536,31104,575424,9854784,162171072,2591476416,40561000128,

%T 624788738496,9504256201920,143120209950144,2137242728790720,

%U 31692755543246784,467167909396586688,6850967848199073216

%N Number of defective 3-colorings of an n X 5 0..2 array connected diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

%C Column 5 of A229510.

%H R. H. Hardin, <a href="/A229507/b229507.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 30*a(n-1) - 225*a(n-2) - 540*a(n-3) + 8748*a(n-4) - 9720*a(n-5) - 72900*a(n-6) + 174960*a(n-7) - 104976*a(n-8) for n > 9.

%F Empirical g.f.: 192*x^2*(8 - 78*x - 63*x^2 + 2187*x^3 - 3348*x^4 - 14418*x^5 + 37908*x^6 - 23328*x^7) / ((1 - 15*x + 18*x^2)^2*(1 - 18*x^2)^2). - _Colin Barker_, Jun 16 2017

%e Some solutions for n=3:

%e 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 2 1

%e 2 2 2 0 1 2 1 2 0 2 2 2 2 2 0 0 2 2 0 1

%e 0 1 1 2 2 2 0 2 1 2 0 1 1 1 1 0 1 1 0 1

%Y Cf. A229510.

%K nonn

%O 1,2

%A _R. H. Hardin_, Sep 25 2013