login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of parts of each size k^2 in all partitions of n^2 into squares; triangle T(n,k), 1 <= k <= n, read by rows.
3

%I #27 Oct 27 2023 22:06:58

%S 1,4,1,15,3,1,50,11,2,1,156,35,10,4,1,460,101,36,14,4,1,1296,298,105,

%T 44,16,6,1,3522,798,300,130,56,23,6,1,9255,2154,827,377,174,82,31,9,1,

%U 23672,5490,2164,1015,502,243,108,43,10,1,59050,13914,5525,2658,1350,705,343,154,55,13,1

%N Number T(n,k) of parts of each size k^2 in all partitions of n^2 into squares; triangle T(n,k), 1 <= k <= n, read by rows.

%H Alois P. Heinz, <a href="/A229468/b229468.txt">Rows n = 1..141, flattened</a> (Rows n = 1..21 from Christopher Hunt Gribble)

%H Christopher Hunt Gribble, <a href="/A229468/a229468.cpp.txt">C++ program</a>

%F Sum_{k=1..n} T(n,k) * k^2 = A037444(n) * n^2.

%e For n = 3, the 4 partitions are:

%e Square side 1 2 3

%e 9 0 0

%e 5 1 0

%e 1 2 0

%e 0 0 1

%e Total 15 3 1

%e So T(3,1) = 15, T(3,2) = 3, T(3,3) = 1.

%e The triangle begins:

%e .\ k 1 2 3 4 5 6 7 8 9 ...

%e .n

%e .1 1

%e .2 4 1

%e .3 15 3 1

%e .4 50 11 2 1

%e .5 156 35 10 4 1

%e .6 460 101 36 14 4 1

%e .7 1296 298 105 44 16 6 1

%e .8 3522 798 300 130 56 23 6 1

%e .9 9255 2154 827 377 174 82 31 9 1

%e 10 23672 5490 2164 1015 502 243 108 43 10 ...

%e 11 59050 13914 5525 2658 1350 705 343 154 55 ...

%p b:= proc(n, i) option remember;

%p `if`(n=0 or i=1, 1+n*x, b(n, i-1)+

%p `if`(i^2>n, 0, (g->g+coeff(g, x, 0)*x^i)(b(n-i^2, i))))

%p end:

%p T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n^2, n)):

%p seq(T(n), n=1..14); # _Alois P. Heinz_, Sep 24 2013

%t b[n_, i_] := b[n, i] = If[n==0 || i==1, 1+n*x, b[n, i-1] + If[i^2>n, 0, Function[ {g}, g+Coefficient[g, x, 0]*x^i][b[n-i^2, i]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 1, n}]][ b[n^2, n]]; Table[T[n], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Mar 09 2015, after _Alois P. Heinz_ *)

%Y Row sums give: A229239.

%Y Cf. A037444.

%K nonn,tabl

%O 1,2

%A _Christopher Hunt Gribble_, Sep 24 2013