login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229441
Number of n X 4 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and rows and columns lexicographically nondecreasing.
1
6, 14, 37, 109, 324, 915, 2402, 5843, 13229, 28071, 56234, 107080, 194989, 341334, 576993, 945488, 1506848, 2342300, 3559899, 5301215, 7749202, 11137381, 15760476, 21986649, 30271487, 41173901, 55374104, 73693842, 97119059, 126825184
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/5760)*n^8 + (1/2016)*n^7 + (1/576)*n^6 + (11/360)*n^5 + (409/5760)*n^4 + (49/288)*n^3 + (41/96)*n^2 + (2771/840)*n + 2.
Conjectures from Colin Barker, Sep 17 2018: (Start)
G.f.: x*(6 - 40*x + 127*x^2 - 224*x^3 + 255*x^4 - 177*x^5 + 77*x^6 - 19*x^7 + 2*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=4:
..0..2..2..2....0..0..0..0....0..2..2..2....0..0..2..2....0..0..0..0
..1..0..0..0....1..1..1..1....1..0..2..2....0..0..2..2....1..1..1..1
..1..0..0..0....1..1..1..1....2..1..0..2....1..1..0..0....2..2..2..2
..1..1..1..1....2..2..2..2....2..2..1..0....2..2..1..1....2..2..2..2
CROSSREFS
Column 4 of A229445.
Sequence in context: A272548 A036387 A053560 * A119874 A344380 A270127
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 23 2013
STATUS
approved