login
A229422
Number of n X 2 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.
2
5, 12, 27, 55, 102, 175, 282, 432, 635, 902, 1245, 1677, 2212, 2865, 3652, 4590, 5697, 6992, 8495, 10227, 12210, 14467, 17022, 19900, 23127, 26730, 30737, 35177, 40080, 45477, 51400, 57882, 64957, 72660, 81027, 90095, 99902, 110487, 121890, 134152
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/24)*n^4 + (5/12)*n^3 + (11/24)*n^2 + (25/12)*n + 2.
Conjectures from Colin Barker, Sep 15 2018: (Start)
G.f.: x*(5 - 13*x + 17*x^2 - 10*x^3 + 2*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Some solutions for n=4:
..0..0....0..0....1..0....0..0....1..1....1..0....0..0....0..0....2..2....0..0
..0..0....1..0....1..0....0..0....2..1....2..1....0..0....1..1....2..2....1..1
..1..1....1..1....1..1....0..0....2..1....2..1....1..0....1..1....2..2....2..2
..2..2....2..1....2..1....1..1....2..2....2..1....1..0....2..1....2..2....2..2
CROSSREFS
Column 2 of A229428.
Sequence in context: A078517 A170828 A357417 * A128439 A240187 A172426
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 22 2013
STATUS
approved