login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of n X 3 0..2 arrays with top left element 0, horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and antidiagonal differences never 0.
1

%I #9 Sep 14 2018 16:11:59

%S 4,13,44,153,536,1881,6604,23189,81428,285937,1004080,3525873,

%T 12381268,43477405,152672956,536118281,1882604616,6610854857,

%U 23214328476,81518208805,286255033124,1005198043361,3529800316000,12395060210401

%N Number of n X 3 0..2 arrays with top left element 0, horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and antidiagonal differences never 0.

%H R. H. Hardin, <a href="/A229397/b229397.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) - 6*a(n-2) + 3*a(n-3) - a(n-4).

%F Empirical g.f.: x*(4 - 7*x + 3*x^2 - x^3) / ((1 - x)*(1 - 4*x + 2*x^2 - x^3)). - _Colin Barker_, Sep 14 2018

%e Some solutions for n=4:

%e 0 0 0 0 0 2 0 2 1 0 2 2 0 2 1 0 0 2 0 0 0

%e 1 1 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0 1 1 0

%e 2 2 1 2 1 1 2 1 0 2 1 1 1 1 0 1 1 0 2 1 0

%e 0 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 1 0 2 1 1

%Y Column 3 of A229402.

%K nonn

%O 1,1

%A _R. H. Hardin_, Sep 22 2013