login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..2 arrays avoiding 11 horizontally, 22 vertically and 00 antidiagonally
8

%I #4 Sep 21 2013 05:49:25

%S 3,8,8,22,38,22,60,184,184,60,164,869,1610,869,164,448,4144,13937,

%T 13937,4144,448,1224,19675,122497,222990,122497,19675,1224,3344,93589,

%U 1067299,3576912,3576912,1067299,93589,3344,9136,444824,9346997,56939585

%N T(n,k)=Number of nXk 0..2 arrays avoiding 11 horizontally, 22 vertically and 00 antidiagonally

%C Table starts

%C ....3......8.......22..........60...........164.............448

%C ....8.....38......184.........869..........4144...........19675

%C ...22....184.....1610.......13937........122497.........1067299

%C ...60....869....13937......222990.......3576912........56939585

%C ..164...4144...122497.....3576912.....104382552......3043629267

%C ..448..19675..1067299....56939585....3043629267....162794962814

%C .1224..93589..9346997...911301584...89084628843...8710922742428

%C .3344.444824.81633583.14532090528.2599351293506.465220677212678

%H R. H. Hardin, <a href="/A229372/b229372.txt">Table of n, a(n) for n = 1..364</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) +2*a(n-2)

%F k=2: a(n) = 2*a(n-1) +13*a(n-2) +3*a(n-3) -13*a(n-4) +4*a(n-5)

%F k=3: [order 11]

%F k=4: [order 24] for n>25

%F k=5: [order 50] for n>54

%e Some solutions for n=3 k=4

%e ..2..1..2..2....1..2..0..2....0..1..0..0....1..0..2..1....0..1..0..1

%e ..0..2..1..0....0..1..2..1....1..2..2..2....2..1..0..0....2..1..0..2

%e ..2..0..1..2....2..1..0..1....0..0..0..1....1..2..1..2....1..2..2..1

%Y Column 1 is A028859

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Sep 21 2013