login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total sum of 9th powers of parts in all partitions of n.
2

%I #23 May 28 2018 02:55:50

%S 0,1,514,20199,283370,2256695,12637956,55247745,202345886,644749920,

%T 1846772550,4836548836,11795957334,27022021703,58819382790,

%U 122237638440,244429962966,471615005229,882955864560,1606698758560,2853601781340,4952029001892,8423307325854

%N Total sum of 9th powers of parts in all partitions of n.

%C The bivariate g.f. for the partition statistic "sum of 9th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^9}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - _Emeric Deutsch_, Dec 06 2015

%H Alois P. Heinz, <a href="/A229331/b229331.txt">Table of n, a(n) for n = 0..1000</a>

%H Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008.

%F a(n) = Sum_{k=1..n} A066633(n,k) * k^9.

%F G.f.: g(x) = (Sum_{k>=1} k^9*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - _Emeric Deutsch_, Dec 06 2015

%F a(n) ~ 27648*sqrt(3)/11 * exp(Pi*sqrt(2*n/3)) * n^4. - _Vaclav Kotesovec_, May 28 2018

%p b:= proc(n, i) option remember; `if`(n=0, [1, 0],

%p `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),

%p ((g, h)-> g+h+[0, h[1]*i^9])(b(n, i-1), b(n-i, i)))))

%p end:

%p a:= n-> b(n, n)[2]:

%p seq(a(n), n=0..40);

%p # second Maple program:

%p g := (sum(k^9*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # _Emeric Deutsch_, Dec 06 2015

%t (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[_, _] = 0; a[n_] := Sum[T[n, k]*k^9, {k, 1, n}]; Array[a, 40, 0] (* _Jean-François Alcover_, Dec 15 2016 *)

%Y Column k=9 of A213191.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 20 2013