login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integer nearest to (2^(n-1) + 3^(n-1))^(2*b(n)) where b(n) = (C1*n^(Pi)*exp(C2*n)*cos(C3*n+C4) + C5)*(C6*n^C7 + Pi/2) (see coefficients in comments).
2

%I #23 Mar 03 2023 11:56:27

%S 4,25,168,1229,9592,78488,664356,5761311,50857532,455110791,

%T 4117706679,37598394076,345973354409,3204537723387,29847287869987,

%U 279317953220125,2624541016148480,24747919106286414,234089443816438414,2220530456953251916,21119025631088169139,201358809736398135352,1924434871799161020533,18434884359943473267194,176994218822287711757127

%N Integer nearest to (2^(n-1) + 3^(n-1))^(2*b(n)) where b(n) = (C1*n^(Pi)*exp(C2*n)*cos(C3*n+C4) + C5)*(C6*n^C7 + Pi/2) (see coefficients in comments).

%C Coefficients are C1=27829/125000000, C2=-0.591561, C3=441/2500, C4=5, C5=19703973/31250000, C6=5.241804273*10^-3, C7=0.6246728093.

%C This sequence gives a good approximation of pi(10^n) (A006880); see (A229256).

%C To obtain this sequence, note first that the square roots of the first values of pi(10^n) (A006880) (see A221205) are equal or close to some values of A229194, i.e., A221205(n) = or ≈ A229194(2n+1) = round(2^(n-1) + 3^(n-1)) for 1 <= n <= 25. Then, values of pi(10^n), A006880(n) = or ≈ (A229194(2n+1))^2 = round((2^(n-1) + 3^(n-1)))^2 for 1 <= n <= 25. Finally, the fit is improved by multiplying the exponent 2 by the sequence b(n) which always has values close to one for 1 <= n <= 25, varying between 0.99382... and 1.01511....

%H Vladimir Pletser, <a href="/A229255/b229255.txt">Table of n, a(n) for n = 1..500</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeCountingFunction.html">Prime Counting Function</a>

%F a(n) = round((2^(n-1) + 3^(n-1))^(2*(C1*n^(Pi)*exp(C2*n)*cos(C3*n+C4) + C5)*(C6*n^C7 + Pi/2))).

%e For n=1, b(1) = (C1*exp(C2)*cos(C3+C4) + C5)*(C6 + Pi/2))= 0.99382..., then a(1) = round(2^(2*0.99382...)) = round(3.96587...) = 4.

%p C1:=27829/125000000: C2:=-5.91561e-01: C3:=441/2500: C4:=5: C5:=19703973/31250000: C6:=5.241804273e-03: C7:=6.246728093e-01: b:=n-> (C1*n^(Pi)*exp(C2*n)*cos(C3*n+C4)+C5)*(C6*n^C7+(Pi/2)): seq(round((2^(n-1)+3^(n-1))^(2*b(n))), n=1..25);

%Y Cf. A006880, A221205, A229194, A229256.

%K nonn,less

%O 1,1

%A _Vladimir Pletser_, Sep 17 2013