login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229189
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^n * Product_{k=1..n} (A(x)^k - x^k).
0
1, 1, 2, 9, 44, 239, 1375, 8263, 51357, 327693, 2135950, 14170571, 95427286, 650944504, 4490552235, 31288674796, 219971575861, 1559144159064, 11134345158295, 80071382287309, 579625552498596, 4222207701924925, 30942404146965589, 228099487538025285, 1691276257040925428
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 44*x^4 + 239*x^5 + 1375*x^6 + 8263*x^7 +...
where g.f. A = A(x) satisfies:
A(x) = 1 + x*A*(A-x) + x^2*A^2*(A-x)*(A^2-x^2) + x^3*A^3*(A-x)*(A^2-x^2)*(A^3-x^3) + x^4*A^4*(A-x)*(A^2-x^2)*(A^3-x^3)*(A^4-x^4) + x^5*A^5*(A-x)*(A^2-x^2)*(A^3-x^3)*(A^4-x^4)*(A^5-x^5) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^m*prod(k=1, m, A^k-x^k +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A229182.
Sequence in context: A124889 A317134 A295809 * A365129 A371576 A246812
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 15 2013
STATUS
approved