login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest integer areas of integer-sided triangles where at least one side is of length prime(n).
2

%I #18 Sep 16 2017 03:44:13

%S 0,6,6,42,66,24,36,114,966,60,930,114,126,1290,4230,90,1770,330,2814,

%T 14910,216,4740,1494,420,420,510,6180,4494,840,570,8382,11790,630,

%U 9174,210,4530,840,2934,45090,3276,22554,1260,24066,336,1386,16716,26586,52182

%N Smallest integer areas of integer-sided triangles where at least one side is of length prime(n).

%C Conjecture: for all prime p > 2 there exists an integer-sided triangle with integer area where at least one side is of length p.

%C There exist triangles of integer area and integer side lengths having two sides whose lengths are distinct prime numbers; for example, (3,4,5), (11,13,20), (19, 20,37), (43,61,68), (59,68,109), (11,60,61), (79,241, 312), (41,50,89), (26,73,97), ... corresponding to the areas 6, 66, 114, 1290, 1770, 330, 4740, 420, 420, ...

%C Observation: there exist some integer-area, integer-sided triangles with two prime sides such that the perimeter equals 4 times the smaller prime. For example:

%C (3, 4, 5) => 12 = 4*3;

%C (11, 13, 20) => 44 = 4*11;

%C (19, 20, 37) => 76 = 4*19;

%C (43, 61, 68) => 172 = 4*43;

%C (59, 68, 109) => 236 = 4*59;

%C (131, 181, 212) => 524 = 4*131;

%C (139, 157, 260) => 556 = 4*139;

%C (179, 260, 277) => 716 = 4*179.

%C The first 25 values (prime(n), smallest area, a, b, c) are:

%C +---------+-------+-----+-----+-----+

%C | prime(n)| Area | a | b | c |

%C +---------+-------+-----+-----+-----+

%C | 2 | 0 | 0 | 0 | 0 |

%C | 3 | 6 | 3 | 4 | 5 |

%C | 5 | 6 | 3 | 4 | 5 |

%C | 7 | 42 | 7 | 15 | 20 |

%C | 11 | 66 | 11 | 13 | 20 |

%C | 13 | 24 | 4 | 13 | 15 |

%C | 17 | 36 | 9 | 10 | 17 |

%C | 19 | 114 | 19 | 20 | 37 |

%C | 23 | 966 | 23 | 140 | 159 |

%C | 29 | 60 | 6 | 25 | 29 |

%C | 31 | 930 | 31 | 68 | 87 |

%C | 37 | 114 | 19 | 20 | 37 |

%C | 41 | 126 | 15 | 28 | 41 |

%C | 43 | 1290 | 43 | 61 | 68 |

%C | 47 | 4230 | 47 | 425 | 468 |

%C | 53 | 90 | 4 | 51 | 53 |

%C | 59 | 1770 | 59 | 68 | 109 |

%C | 61 | 330 | 11 | 60 | 61 |

%C | 67 | 2814 | 67 | 85 | 116 |

%C | 71 | 14910 | 71 | 447 | 476 |

%C | 73 | 216 | 9 | 73 | 80 |

%C | 79 | 4740 | 79 | 241 | 312 |

%C | 83 | 1494 | 83 | 85 | 164 |

%C | 89 | 420 | 41 | 50 | 89 |

%C | 97 | 420 | 26 | 73 | 97 |

%p with(numtheory):nn:=500: for m from 2 to 40 do: q:=ithprime(m):ii:=0:for a from 1

%p to nn while(ii=0) do: for b from a to nn while(ii=0) do: for c from b to nn while(ii=0) do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then x0:= sqrt(x):else fi:if (x0=floor(x0) and a=q) or (x0=floor(x0) and b=q) or (x0=floor(x0) and c=q)then ii:=1: printf ( "%d %d %d %d %d \n",q,x0,a,b,c):

%p :else fi:od:od:od:od:

%Y Cf. A226453.

%K nonn

%O 1,2

%A _Michel Lagneau_, Sep 17 2013