login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the negated value of the integral over (1/(1-y) + 1/log(y))*log(1-y)/y between 0 and 1.
1

%I #11 Dec 27 2016 02:36:16

%S 9,1,6,2,4,0,1,4,9,8,4,4,2,9,5,8,3,0,5,3,4,8,0,9,2,7,5,6,2,5,7,3,3,3,

%T 8,8,8,0,1,4,4,7,1,8,2,3,9,3,8,7,6,1,3,7,8,4,4,1,8,9,2,2,3,9,4,4,7,3,

%U 5,1,9,8,4,7,7,9,6,7,2,8,6,8,6,9,3,5,9

%N Decimal expansion of the negated value of the integral over (1/(1-y) + 1/log(y))*log(1-y)/y between 0 and 1.

%H G. C. Greubel, <a href="/A229156/b229156.txt">Table of n, a(n) for n = 0..2500</a>

%H D. Zagier, <a href="http://dx.doi.org/10.1007/BF01343950">A Kronecker limit formula for real quadratic fields</a>, Mathem. Ann. 213 (2) (1975) 153-184, value of F(1), equation (7.12).

%F Equals A155969/2 + A072691 + A082633.

%e -0.91624014984429583053480927562573338...

%t RealDigits[N[EulerGamma^2/2 + Pi^2/12 + StieltjesGamma[1], 2501]][[1]] (* _G. C. Greubel_, Dec 26 2016 *)

%o (PARI) intnum(y=0, 1, (1/(1-y)+1/log(y)) *log(1-y) /y) \\ _Michel Marcus_, Dec 26 2016

%K nonn,cons

%O 0,1

%A _R. J. Mathar_, Sep 15 2013