Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:46:05
%S 0,4,20,102,520,2570,12300,57358,262160,1179666,5242900,23068694,
%T 100663320,436207642,1879048220,8053063710,34359738400,146028888098,
%U 618475290660,2611340116006,10995116277800,46179488366634,193514046488620,809240558043182,3377699720527920
%N n * (2 + 2^(2*n - 1)).
%C a(n) mod 9 is periodic: repeat 0, 4, 2, 3, 7, 5, 6, 1, 8.
%C b(n) = a(n) - n = 0, 3, 18, 99, 516, 2565, 12294,... = A215149(2n)/2.
%H Vincenzo Librandi, <a href="/A229135/b229135.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (10,-33,40,-16).
%F a(n) = n + A215149(2n)/2.
%F a(n) = (A228827(n) - A000367(n))/A002445(n).
%F a(n) = 2*n*A123166(n).
%F G.f.: (34*x^3 - 20*x^2 + 4*x)/((1-x)^2*(1-4*x)^2). - _Ralf Stephan_, Sep 20 2013
%e a(0)=0*(2+1/2)=0, a(1)=1*(2+2)=4, a(2)=2*(2+8)=20, a(3)=3*(2+32)=102, a(4)=4*(2+128)=520, a(5)=5*(2+512)=2570.
%t Table[(n (2 + 2^(2 n - 1))), {n, 0, 40}] (* _Vincenzo Librandi_, Sep 20 2013 *)
%o (PARI) a(n) = n*(2+2^(2*n-1)); \\ _Michel Marcus_, Sep 16 2013
%o (Magma) [n*(2 + 2^(2*n - 1)): n in [0..30]]; // _Vincenzo Librandi_, Sep 20 2013
%Y Cf. A005843, A052539, A081294, A215149, A228827, A000367, A002445, A123166.
%K nonn,easy
%O 0,2
%A _Paul Curtz_, Sep 15 2013
%E Better definition by Michel Marcus.
%E More terms from _Vincenzo Librandi_, Sep 20 2013