OFFSET
1,1
COMMENTS
Conjecture: the expression p^2+q^2+c with p and q consecutive primes and c=21 generates more primes than any other value of c in the range 1..150. Hence, c=21 is considered for this sequence.
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..5000
EXAMPLE
a(1) = 191: prime(4)^2 + prime(4+1)^2 + 21 = 191, which is prime.
MAPLE
KD:= proc() local a; a:= ithprime(n)^2+ithprime(n+1)^2+21; if isprime(a) then RETURN(a): fi; end: seq(KD(), n=1..300);
MATHEMATICA
Select[Table[Prime[n]^2 + Prime[n + 1]^2 + 21, {n, 100}], PrimeQ] (* T. D. Noe, Sep 12 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Sep 12 2013
STATUS
approved