login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of arrays of median of three adjacent elements of some length n+2 0..5 array, with no adjacent equal elements in the latter.
1

%I #8 Sep 13 2013 20:07:51

%S 6,34,186,794,3002,10860,38768,139456,506236,1849846,6780968,24874236,

%T 91221120,334365156,1225151856,4488311694,16442040398,60232977210,

%U 220660283800,808393136582,2961592442222,10849984832400,39749595896184

%N Number of arrays of median of three adjacent elements of some length n+2 0..5 array, with no adjacent equal elements in the latter.

%C Column 5 of A229012.

%H R. H. Hardin, <a href="/A229009/b229009.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) -2*a(n-2) -20*a(n-3) +22*a(n-4) +82*a(n-5) -149*a(n-6) -43*a(n-7) +448*a(n-8) -234*a(n-9) -682*a(n-10) +1345*a(n-11) +224*a(n-12) -2593*a(n-13) +2526*a(n-14) +1704*a(n-15) -5131*a(n-16) +3300*a(n-17) +3626*a(n-18) -8749*a(n-19) +6357*a(n-20) +4147*a(n-21) -16222*a(n-22) +17531*a(n-23) -1049*a(n-24) -26481*a(n-25) +39209*a(n-26) -20438*a(n-27) -26566*a(n-28) +64130*a(n-29) -57341*a(n-30) +140*a(n-31) +70204*a(n-32) -97044*a(n-33) +51459*a(n-34) +41116*a(n-35) -107708*a(n-36) +100930*a(n-37) -16302*a(n-38) -75708*a(n-39) +115023*a(n-40) -67934*a(n-41) -19000*a(n-42) +85062*a(n-43) -80464*a(n-44) +25613*a(n-45) +34418*a(n-46) -57825*a(n-47) +36505*a(n-48) +585*a(n-49) -24392*a(n-50) +24406*a(n-51) -9363*a(n-52) -5285*a(n-53) +9392*a(n-54) -6018*a(n-55) +851*a(n-56) +2156*a(n-57) -2078*a(n-58) +767*a(n-59) +139*a(n-60) -384*a(n-61) +244*a(n-62) -37*a(n-63) -36*a(n-64) +32*a(n-65) -11*a(n-66) +2*a(n-68) -a(n-69)

%e Some solutions for n=4

%e ..5....1....5....2....4....5....0....1....3....1....1....3....0....5....2....4

%e ..1....0....2....4....5....0....4....1....1....1....3....3....4....0....2....2

%e ..3....4....3....4....1....3....1....3....4....4....2....3....2....5....3....5

%e ..0....1....3....2....2....2....2....2....1....2....2....4....2....4....3....4

%K nonn

%O 1,1

%A _R. H. Hardin_, Sep 10 2013