|
|
A228978
|
|
Primes p such that p and p+2, p^2+p-1 and p^2+p+1, and (p^2+p-1)^2+p^2+p-2 and (p^2+p-1)^2+p^2+p are three pairs of twin primes.
|
|
0
|
|
|
11767181, 35057849, 84428051, 91460249, 105929711, 115401719, 162790781, 197352401, 217761851, 235863209, 266250839, 284597741, 370000511, 386278019, 554761451, 576412271, 581549669, 592975109, 611599661, 625806761, 626450411, 655727771, 670280591, 680468669, 744737111, 883687349, 1085880641, 1119813311, 1139369111
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Subsequence of A228968.
|
|
LINKS
|
Table of n, a(n) for n=1..29.
|
|
MATHEMATICA
|
tptpQ[n_]:=Module[{p2=n^2+n}, AllTrue[{p2-1, p2+1, (p2-1)^2+p2-2, (p2-1)^2+ p2}, PrimeQ]]; Select[Transpose[Select[Partition[ Prime[ Range[ 58*10^6]], 2, 1], #[[2]]-#[[1]]==2&]][[1]], tptpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 10 2014 *)
|
|
CROSSREFS
|
Cf. A088483, A228968.
Sequence in context: A028241 A248166 A234070 * A234831 A280983 A184651
Adjacent sequences: A228975 A228976 A228977 * A228979 A228980 A228981
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Pierre CAMI, Sep 10 2013
|
|
EXTENSIONS
|
Corrected by Harvey P. Dale, Nov 10 2014
|
|
STATUS
|
approved
|
|
|
|