login
T(n,k) = number of nXk 0..2 arrays of the median of the corresponding element, the element to the east and the element to the south in a larger (n+1)X(k+1) 0..2 array.
7

%I #8 Sep 13 2013 21:45:23

%S 3,9,9,27,81,27,81,729,729,81,243,6387,19503,6387,243,729,55887,

%T 485397,485397,55887,729,2187,488037,11824875,32175213,11824875,

%U 488037,2187,6561,4259277,284888979,2056956837,2056956837,284888979,4259277,6561

%N T(n,k) = number of nXk 0..2 arrays of the median of the corresponding element, the element to the east and the element to the south in a larger (n+1)X(k+1) 0..2 array.

%C Table starts

%C .....3.........9............27................81...................243

%C .....9........81...........729..............6387.................55887

%C ....27.......729.........19503............485397..............11824875

%C ....81......6387........485397..........32175213............2056956837

%C ...243.....55887......11824875........2056956837..........340872730929

%C ...729....488037.....284888979......129504297807........55502388155025

%C ..2187...4259277....6833010879.....8110003331559......8985215719785555

%C ..6561..37155951..163568332743...506820492353703...1451684774711834475

%C .19683.324050745.3912114851403.31647512289810393.234373576090867144155

%H R. H. Hardin, <a href="/A228977/b228977.txt">Table of n, a(n) for n = 1..97</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1).

%F k=2: [order 12].

%e Some solutions for n=4 k=4

%e ..0..0..0..2....0..0..0..0....0..0..0..2....0..0..0..0....0..0..0..0

%e ..0..0..1..1....0..0..0..2....0..0..1..0....0..0..2..0....0..0..2..0

%e ..0..1..2..1....1..1..0..0....0..0..1..1....0..2..1..0....2..0..0..2

%e ..1..2..0..0....0..2..2..0....0..1..2..0....0..1..0..1....0..1..2..1

%Y Column 1 is A000244.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Sep 10 2013