login
A228969
Triangle of numerators of the coefficients t(n,k) in the formula B(2n) = -sum_{k=1..n-1} t(n,k)*B(2k)*B(2n-2k), where the B() are the even-indexed Bernoulli numbers.
2
6, 5, 25, 28, 70, 588, 45, 1050, 4410, 3825, 22, 165, 924, 2805, 7502, 91, 5005, 63063, 255255, 341341, 124215, 24, 1820, 168168, 12870, 2730728, 496860, 131064, 17, 1700, 6188, 413270, 1657942, 402220, 1856740, 371365
OFFSET
2,1
REFERENCES
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 100.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 2..105
EXAMPLE
6/5;
5/7, 25/7;
28/85, 70/17, 588/85;
45/341, 1050/341, 4410/341, 3825/341;
...
MATHEMATICA
Table[(2^(2*k) - 1)/(2^(2*n) - 1)* Binomial[2*n, 2*k], {n, 2, 9}, {k, 1, n-1}] // Flatten // Numerator
CROSSREFS
Cf. A228970 (denominators).
Sequence in context: A082384 A248265 A267284 * A256961 A371253 A267743
KEYWORD
frac,nonn,tabl
AUTHOR
STATUS
approved