login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = (1 + x*A(x))^2 * (1 + A(x)) / 2.
9

%I #35 Oct 14 2019 11:42:41

%S 1,4,26,208,1858,17764,177842,1840672,19536546,211483556,2325884778,

%T 25915289008,291914007042,3318712168516,38030817789154,

%U 438833757057344,5094403323613762,59458030569218756,697263250712144058,8211774425030092944,97084082739501794626

%N G.f. satisfies: A(x) = (1 + x*A(x))^2 * (1 + A(x)) / 2.

%H G. C. Greubel, <a href="/A228966/b228966.txt">Table of n, a(n) for n = 0..900</a>

%H Elżbieta Liszewska, Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.

%F G.f. A(x) satisfies:

%F (1) A(x) = exp( x*(A(x) + A(x)^2) + Integral(A(x) + A(x)^2 dx) ).

%F (2) A(x) = (1/x)*Series_Reversion( x*(1-2*x-x^2)/(1+x)^2 ).

%F (3) A(x) = 1 + x*A(x)*(1 + A(x))*(2 + x*A(x)).

%F (4) A(x) = 1 + Sum_{n>=2} (-1)^n * 2*n * x^(n-1) * A(x)^n.

%F Recurrence: 2*n*(n+1)*(29*n-39)*a(n) = n*(754*n^2 - 1391*n + 519)*a(n-1) - (203*n^3 - 679*n^2 + 660*n - 180)*a(n-2) + (n-3)*(2*n-3)*(29*n-10)*a(n-3). - _Vaclav Kotesovec_, Dec 21 2013

%F a(n) ~ 1/174*sqrt(87)*sqrt((8946558 + 86826*sqrt(87))^(1/3)*((8946558 + 86826*sqrt(87))^(2/3) + 42978 + 174*(8946558 + 86826*sqrt(87))^(1/3))) / ((8946558 + 86826*sqrt(87))^(1/3) * sqrt(Pi)) * 6^(-n)*((16046 + 174*sqrt(87))^(2/3) + 634 + 26*(16046 + 174*sqrt(87))^(1/3))^n*(16046 + 174*sqrt(87))^(-n/3) * (1/n)^(3/2). - _Vaclav Kotesovec_, Dec 21 2013

%e G.f.: A(x) = 1 + 4*x + 26*x^2 + 208*x^3 + 1858*x^4 + 17764*x^5 +...

%e Related expansions.

%e (1 + x*A(x))^2 = 1 + 2*x + 9*x^2 + 60*x^3 + 484*x^4 + 4340*x^5 +...

%e (1 + A(x))/2 = 1 + 2*x + 13*x^2 + 104*x^3 + 929*x^4 + 8882*x^5 +...

%e A(x) + A(x)^2 = 2 + 12*x + 94*x^2 + 832*x^3 + 7914*x^4 + 78972*x^5 +...

%e log(A(x)) = 4*x + 36*x^2/2 + 376*x^3/3 + 4160*x^4/4 + 47484*x^5/5 +...

%t CoefficientList[InverseSeries[Series[x*(1-2*x-x^2)/(1+x)^2, {x, 0, 20}], x]/x,x] (* _Vaclav Kotesovec_, Dec 21 2013 *)

%o (PARI) {a(n)=polcoeff((serreverse(x*(1-2*x-x^2)/(1+x)^2 +x^2*O(x^n))/x),n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n)=local(A=1);for(i=1,n,A=exp(x*(A+A^2)+intformal(A+A^2 +x*O(x^n))));polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n)=local(A=1);for(i=1,n,A=1+x*A*(1+A)*(2+x*A) +x*O(x^n));polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A231552, A231553, A231554, A231556, A231615, A231616, A231618.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 10 2013