Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 19 2019 13:26:57
%S 4,3,7,13,6,13,22,9,19,31,12,25,40,15,31,49,18,37,58,21,43,67,24,49,
%T 76,27,55,85,30,61,94,33,67,103,36,73,112,39,79,121,42,85,130,45,91,
%U 139,48,97,148,51,103,157,54,109,166,57
%N Coins left when packing boomerangs into n X n coins.
%C The coins left after packing boomerangs into n X n coins using the same rule as A229593. See illustration in links.
%H Kival Ngaokrajang, <a href="/A228949/a228949.pdf">Illustration of initial terms</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).
%F G.f. -x^2*(-4-3*x-7*x^2-5*x^3+x^5) / ( (x-1)^2*(1+x+x^2)^2 ). - _R. J. Mathar_, Oct 16 2013
%t LinearRecurrence[{0,0,2,0,0,-1},{4,3,7,13,6,13},80] (* _Harvey P. Dale_, Jan 19 2019 *)
%o (Small Basic)
%o u[2]=4
%o d[3]=-1
%o d[4]=4
%o d[5]=6
%o For n=2 To 100
%o If n+1 >=6 Then
%o If Math.Remainder(n+1,3)=0 Then
%o d[n+1]=d[n-2]-6
%o Else
%o d[n+1]=d[n-2]+3
%o EndIf
%o EndIf
%o u[n+1]=u[n]+d[n+1]
%o TextWindow.Write(u[n]+", ")
%o EndFor
%Y Cf. A229593 (Boomerangs), A229598 (Voids), A017209 (trisection), A008585 (trisection), A016921 (trisection).
%K nonn,easy
%O 2,1
%A _Kival Ngaokrajang_, Oct 05 2013