login
A228943
Number of decompositions of highly composite numbers (A002182) into unordered sums of two primes.
1
0, 0, 1, 1, 1, 3, 4, 5, 6, 12, 14, 18, 22, 39, 51, 68, 83, 112, 184, 251, 315, 431, 527, 652, 768, 1011, 1128, 1305, 1836, 2344, 3240, 4082, 4955, 5725, 8023, 8723, 10260, 11945, 16771, 21466, 30280, 38583, 46645, 54789, 77430, 85067, 99199, 120742, 154753
OFFSET
1,6
COMMENTS
a(n) = A045917(A002182(n)/2) for n>1.
Conjecture: (a) This sequence is strictly increasing beginning with n=5. (b) For all n>2, if p is the greatest prime with p<A002182(n)-1, then A002182(n)-p is prime. This is a strengthening of a conjecture regarding A117825. - Jaycob Coleman, Sep 08 2013
EXAMPLE
a(6)=3, since 24=5+19=7+17=11+13.
PROG
(PARI) nbd(n) = my(s); forprime(p=2, n\2, s+=isprime(n-p)); s;
lista(nn) = {last = 1; print1(nbd(last), ", "); forstep(n=2, nn, 2, if(numdiv(n)> last, last=numdiv(n); print1(nbd(n), ", ")); ); } \\ Michel Marcus, Sep 10 2013
CROSSREFS
Sequence in context: A026493 A177431 A145735 * A361081 A213206 A299496
KEYWORD
nonn
AUTHOR
Jaycob Coleman, Sep 08 2013
EXTENSIONS
More terms from Michel Marcus, Sep 10 2013
STATUS
approved